

HINTS & SOLUTION WORKBOOK-1

Chemical Bonding - I & II

Daily Tutorial Sheet-12	Level - 3
-------------------------	-----------

- 141.(D) N can form $p\pi p\pi$ multiple bonds with itself and with carbon and oxygen. P and As due to large size do not show π bonding tendency.
- **142.(A)** $PF_4CH_3 sp^3d$ (Trigonal bipyramidal)s

Electronegative elements prefer to attach axial position in TBP geometry.

*143.(BC) $F_2B - C = C - BF_2$ is planar. All atoms are in same plane. (sp)(sp)

 $N(SiH_3)_3$ is planar due to back bonding.

*144.(ABC) A.
$$H_3$$
CO \longrightarrow CH_3 \therefore $\mu_{net} = \mu_1 + \mu_2 \neq 0$

- **B.** O_2N \longrightarrow NO_2 \therefore $\mu_{net} = \mu_1 \mu_2 = 0$
- **c.** CI \longrightarrow Br $\qquad \therefore \quad \mu_{\text{net}} = \mu_1 \mu_2 \simeq 0$
- D. $C_{1} = C_{1} + \mu_{1} + \mu_{2} \neq 0$
- **145.(B)** $N_2 : KK * (\sigma 2s)^2 (\sigma * 2s)^2 (\pi 2px)^2 (\pi 2py)^2 (\sigma 2pz)^2$
- 146. [A-p, r; B-q, s; C-p, s; D-p, r]
 - (A) CO_2 O = C = 0 $\mu_R = 0$, subtractive
 - **(B)** $\mu \neq 0$ Additive
 - (c) $I \longrightarrow F$ $\mu_R \neq 0$, subtractive
 - **(D)** $\mu_R = 0$, Subtractive